There continues to be more interest in the environmental implications of firefighting chemicals.

Fire retardants and suppressants are used extensively for suppression and control of range and forest fires. Each year, fire control agencies utilize millions of gallons of these mixtures on a wide array of ecosystems. These chemicals are often applied in environmentally sensitive areas, which may contain endangered, threatened, or economically significant plant and animal species. The study of the potential impact of these chemicals is on going. It is a very difficult problem in balancing the benefit of the chemical mixture to accomplish its primary mission to control a fire and to minimize the extent of the environmental impact.

Being of common plant origin, CF will meet this challenge.

Please explain the cooling mechanism.

CF absorbs heat, retains it, and then releases it through a diffused moisture-air release. This diffusion release is slow and takes place until the surrounding temperature is reduced below the ignition (flash) point. The tremendous thermal absorption capacity of CF is best demonstrated by the following experiment:

A common white cotton hand towel placed over the experimenters hand is sprayed with CF. A handful of magnesium chips is placed on the towel. A propane cylinder soldering-torch is used to ignite the magnesium. After about one minute the magnesium has burnt and during that time reached a peak temperature ofS,600 degrees E, however leaving the towel still intact, albeit slightly scorched.

Address the specific volume relationship of CF/water and burning fuel volumes.

There is no single statistic to equate the volumetric mix of CF due to all the variable performance parameters that have been observed in the field. The total volume and percentage of CF in the water varies according to the application. Perhaps the best way to address this topic is to cite two examples:

  1. In a house fire a firefighter was able to knock down the flames using a three percent solution. He explained it took only about 25 gallons of the mix, whereas he would estimate it would have normally taken about 100 gallons of plain water.
  2. A brush truck was used in an attempt to put out a palmetto-based fire in Florida. The fire chief indicated that after using a "considerable" amount of water he was having no luck in keeping the fire under control as the fire kept rekindling. He mixed in a two percent solution of CF and was then successful. Normally a one-half to one percent mix is used in brush fires. Because of the high oil content of the palmetto, FireFreeze recommends a ratio of two to three percent.

There are concerns about the use of existing firefighting apparatus.

CF is used in and with the following applications/ equipment:

It is added directly into fire truck booster tanks, fixed units, CAF (compressed air foam) machines, injectors, inductors, sprinkler systems, automatic fire extinguishing systems, closed loop systems, water mist systems, hand-held extinguishers, dust collector systems, forestry equipment and firefighting IFEX systems, Bambi-bucket applications and deluge systems.

In UL Certificate of Compliance, UL 2000 Directory for fire fighting agents in accordance with NFPA 18 Standard for Wetting Agents, HYPRO and WS Darley (major equipment manufacturers) confirm that and show CF to be compatible and pumpable through hoses and pumps.

CF can be used in standard firefighting equipment without fear of corrosion or clogging of lines and hoses as is very common when using foams, gels and other high viscosity agents. Before introducing CF it is important to clean the equipment to eliminate residue of these products as CF performance is severely compromised.
In aerial applications there is the problem of shearing of the falling mass that to some degree can be reduced by the addition of thickeners/gums, please comment.

CF breaks down water-tension and molecular bonding.

Accordingly, water no longer falls as attached molecular mass; but semi-separate molecules. This means less air resistance. Field-testing is necessary to address wind drift.

Thickeners made up of polymers and/or gums could cause other problems. Super-absorbent polymers themselves ignite after a certain point. This might cause re-ignition. The issue should be studied further by subjecting these polymers to high ­intensity temperatures. Similarly some gums, which are not 100% soluble in water, also ignite at certain temperatures.

There appears to be some confusion over your product as it relates to the gels.
Perhaps the best way to address this is that the original FS specification was entitled "Gels and Elastomers." Later the specification was changed to "Water Enhancers."

The products listed on the QPL, in general, use the term gel in their product name thus the reader is led to assume all of the listed products are gels. CF , being relatively new to the FS evaluation program, got caught up in this terminology debacle.

Tell us the use of your product for structure protection.
Normally the process of applying CF mixed with water to a structure enhances the effectiveness of the water. In theory this mixture is effective until the water has evaporated. Field experience is demonstrating that the residual left on the structure, after the evaporation period, may be extending the protective performance.

Based on field evaluations and feedback from users there is evidence that CF is providing various degrees of protection depending on a number of factors such as weather and other conditions. Thus the product may provide a protective barrier from oncoming wildfires for a period of time. The longevity of course would be influenced by wind, rain and the natural biodegradability of the product.

It seems the product would be useful in other countries
Indeed, over the years, countries such as Mexico, Australia and Saudi Arabia have used CF extensively. It is interesting to note that the U.S. and Australia have a

Wildland Firefighting Partnership. The arrangement allows both nations to save lives and property by using personnel and equipment from the other country, thus taking advantage of the countries differing fire seasons.

Please address the apparent reluctance of some agencies to use your product.

Setting the controversy of the Gel nomenclature debacle aside there is a very important aspect to address. There is the unwritten, unspoken code of the tight - brotherhood of firefighters. Fires mean jobs. Fires mean overtime pay. Small independents providing secondary support such as the food and beverage mobile canteens look forward to the fire season, in some cases, for their livelihood. Fires are essential to the ecological process. It has been said, " CF works too good." This is one side of the coin.

The other side of the coin: loss of life, unwanted destruction of property, natural and cultural resources-requires no further elaboration.
Federal policy is founded on certain guiding principles.

That is, the firefighter and public safety is the first priority in every fire management activity. The fire management plans should be based on the best available science.